Background Diuretics are a mainstay of treating symptomatic volume overload in heart failure (HF), including at the end-of-life. For some patients, bowel edema from HF-related congestion can diminish the absorption and effectiveness of oral diuretics. Intravenous diuretics, however, are difficult to administer in an outpatient or hospice setting, which likely contributes to the frequent emergency department visits and hospitalizations in HF, even near the end-of-life (1). In this context, subcutaneous (SC) furosemide can be helpful. This Fast Fact reviews its use.

Clinical Context Although thiazide diuretics (e.g. hydrochlorothiazide, chlorothalidone, or metolazone) and potassium sparing diuretics (e.g. spironolactone) are established therapies for chronic HF, loop diuretics such as furosemide or bumetanide are the mainstay for acute or severe HF (2,3). Loop diuretics work via two mechanisms: an immediate veno-dilator effect as well as diuresis of fluid and electrolytes (2). Some HF patients enrolled in hospice develop refractory dyspnea, and swelling with resultant anxiety despite the use of opioids or benzodiazepines (4-6). SC furosemide, which is more easily administered at home than IV, has been proposed to help these patients.

Pharmacology Bumetanide has not been established as safe and/or effective subcutaneously, thus furosemide is the preferred SC diuretic. Typically, the IV furosemide formulation is given via a SC clysis line for continuous subcutaneous infusions (CSCI) or a SC butterfly needle for intermittent dosing. Hence, SC and IV costs are essentially equivalent. For patients with an indwelling IV catheter, there is little rationale to utilize SC over IV. Furosemide formulations come in 20 to 50 mL syringes with concentrations of 10 mg/ml. Current daily dose limits are based on available commercial syringes and are approximately 200-300 mg daily. This may change as the market for SC medications change (7).

- Onset of diuresis is 1-1.5 hours for oral; 30 minutes for SC; 5 minutes for IV furosemide. Therefore, if there is minimal urine output 1-2 hours after oral administration of furosemide, it is reasonable to consider a dose of parenteral furosemide in the setting of symptomatic dyspnea from HF (8).
- Diuretic effect is 6-8 hours for oral; 4 hours for SC; 2 hours for IV furosemide (9).
- For intermittent SC dosing, many experts recommend starting with an equivalent oral dose. For CSCI dosing, calculate the initial hourly dose from the previous daily oral dose (10, 11). E.g., someone receiving 100 mg/day of oral furosemide should receive 100 mg SC in 24 hours or 4 mg/hr CSCI.

Outcomes A human, pre-clinical, placebo-controlled trial demonstrated that furosemide has diuretic activity when administered SC (9). The clinical evidence for SC furosemide otherwise is in a handful of case reports and series. In a series of 43 consecutive end-stage HF patients prescribed CSCI by palliative care or hospice clinicians, CSCI was associated with a median weight loss of 5.6 kg and most patients avoided hospital admission and terminal breathlessness (10). A case series of HF patients who received intermittent SC furosemide demonstrated a prompt resolution of weight gain, breathlessness, and peripheral edema (4).

Side Effects & Safety Diuretics can cause intravascular volume depletion and kidney injury. Furosemide promotes diuresis of sodium, potassium, magnesium, and chloride which can lead to significant electrolyte abnormalities and subsequent risk for cardiac arrhythmia (7). Furosemide infusions have been associated with ototoxicity when used at doses >1600 mg daily or when used concurrently with a medication associated with ototoxicity (e.g. vancomycin) (7,12). Self-resolving dermatologic site reactions involving stinging/burning at the site of injection may occur in up to 23% receiving CSCI (9).

Controversies Clinicians should be cognizant of several unresolved clinical questions regarding the appropriate use of SC furosemide (11).

- In general, the data supporting the efficacy of SC furosemide is less robust than other SC palliative-based medications, e.g. SC use of opioids (11).
- Clinical debate remains regarding the need for serum monitoring of renal function and electrolyte abnormalities for dying HF patients receiving SC furosemide to prevent sentinel iatrogenic events.
such as renal failure or cardiac arrhythmias. When prognosis is anticipated to be less than a month and goals of care are comfort, the rationale for serum lab monitoring may be less compelling.

- For patients who can still safely swallow oral medications, adjuvant oral diuretics such as chlorthalidone and metolazone may augment the effectiveness of SC furosemide (5,13).
- While empiric oral potassium supplementation has been associated with prolonged survival in those initiating furosemide use (14), there is no current literature supporting or arguing against the use of oral potassium in standard end-of-life diuretic use and supplementation may depend on goals of care.
- It remains unclear whether the optimal approach to utilizing SC is as a rescue therapy when clear signs of acute HF are apparent – e.g. breathlessness, peripheral edema – versus a preventative approach wherein intermittent SC furosemide doses are given in response to weight gain.

Conclusion

In the setting of end-of-life HF management, there appears to be a role for the use of SC furosemide when oral treatment fails. While further research is needed, small clinical investigations have demonstrated effective diuresis and prevention of hospital admissions and hospice de-enrollment without significant adverse effects from SC furosemide.

References

Authors’ Affiliation: Medical College of Wisconsin, Milwaukee, WI.
Conflicts of Interest: None reported
Version History: Originally edited by Drew A Rosielle MD; first electronically published in April 2018.

Fast Facts and Concepts are edited by Sean Marks MD (Medical College of Wisconsin) and associate editor Drew A Rosielle MD (University of Minnesota Medical School), with the generous support of a
volunteer peer-review editorial board, and are made available online by the Palliative Care Network of Wisconsin (PCNOW); the authors of each individual Fast Fact are solely responsible for that Fast Fact’s content. The full set of Fast Facts are available at Palliative Care Network of Wisconsin with contact information, and how to reference Fast Facts.

Copyright: All Fast Facts and Concepts are published under a Creative Commons Attribution-NonCommercial 4.0 International Copyright (http://creativecommons.org/licenses/by-nc/4.0/). Fast Facts can only be copied and distributed for non-commercial, educational purposes. If you adapt or distribute a Fast Fact, let us know!

Disclaimer: Fast Facts and Concepts provide educational information for health care professionals. This information is not medical advice. Fast Facts are not continually updated, and new safety information may emerge after a Fast Fact is published. Health care providers should always exercise their own independent clinical judgment and consult other relevant and up-to-date experts and resources. Some Fast Facts cite the use of a product in a dosage, for an indication, or in a manner other than that recommended in the product labeling. Accordingly, the official prescribing information should be consulted before any such product is used.