FAST FACTS AND CONCEPTS #191
PROGNOSTICATION IN PATIENTS RECEIVING DIALYSIS
Matthew Hudson, Steven Weisbord MD, Robert Arnold MD

Background End stage renal disease (ESRD) is a highly prevalent and rapidly increasing condition. While dialysis prolongs life in patients with ESRD, life expectancy remains only a third to a sixth as long as similar patients not on dialysis. The overall one and five year mortality rates are 25% and 60%, respectively. Approximately 20% of ESRD patient deaths occur after a decision to stop dialysis, highlighting the importance of discussions of prognosis and goals of care with this chronically ill population. This Fast Fact reviews the current data regarding prognostication in patients receiving chronic hemo- and peritoneal dialysis. Note: renal transplantation reduces mortality and the following data do not consider patients with functioning kidney transplants.

Prognostic Factors Several patient-specific factors influence prognosis:
• **Age:** For 1-year increments beginning at age 18, there is a 3 to 4% increase in annual mortality compared to the general population. 1 and 2 year mortality rates go from 10 and 12% at 25-29 years of age, to 25% and 42% at 65-69 years, to 39% and 61% at 80-84 years of age.
• **Functional status:** the relative risk of dying within 3 years of starting dialysis is 1.44 for those with Karnofsky Performance Status scores of <70 compared to a score ≥70 (see Fast Fact #13).
• **Albumin:** a low serum albumin level, both at baseline and during the course of dialysis treatment, is a consistent and strong predictor of death. For example, the 1 and 2 year survival of patients with an albumin of >3.5 g/dL is 86% and 76% respectively, compared to 50% and 17% if less than 3.5.
• **Surprise question:** in a multivariate analysis, the likelihood of death in 6 months was significantly greater when nephrologists answered no to the question “would I be surprised if this patient died within 6 months?”

Prognostic Tools It has long been recognized that patient comorbidity is strongly correlated with prognosis in ESRD. An age-modified Charlson Comorbidity Index (CCI), which stratifies patients based on medical comorbidities and age, has been successfully used to predict mortality in dialysis-dependent patients (8):

Modified Charlson Comorbidity Index: Total score is the sum of the comorbidity points

<table>
<thead>
<tr>
<th>Comorbidity Points</th>
<th>Modified CCI Score Totals</th>
<th>Annual mortality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point each for coronary artery disease, congestive heart failure, peripheral vascular disease, cerebrovascular disease, dementia, chronic pulmonary disease, connective tissue disorder, peptic ulcer disease, mild liver disease, diabetes</td>
<td>Low score (≤3)</td>
<td>0.03</td>
</tr>
<tr>
<td>1 point for every decade over 40 (e.g. a 65 year old would receive 3 points).</td>
<td>Moderate (4-5)</td>
<td>0.13</td>
</tr>
<tr>
<td>2 points each for hemiplegia, moderate-to-severe renal disease (including being on dialysis), diabetes with end-organ damage, cancer (including leukemia or lymphoma)</td>
<td>High (6-7)</td>
<td>0.27</td>
</tr>
<tr>
<td>3 points for moderate-to-severe liver disease</td>
<td>Very High (≥8)</td>
<td>0.49</td>
</tr>
<tr>
<td>6 points each for metastatic solid tumor or AIDS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, a 66 year old male on dialysis with a history of CHF, COPD, and diabetes with retinopathy would have a CCI score of 9 and a nearly 50% chance of dying within a year. Using this, a provider could discuss with the patient his prognosis and use this to facilitate further discussion regarding planning for the future, including end-of-life decisions. The Index of Coexistent Disease (ICED), a general illness severity index, has also shown predictive power in ESRD. The scale’s complexity and length however (it
entails asking over 100 questions) limit its clinical usefulness.

Summary The age-modified CCI, in conjunction with other prognostic factors such as serum albumin and functional status, can be used to help facilitate discussions with dialysis-dependent patients and their families regarding goals of care and end-of-life planning.

References:

Version History: Originally published October 2007. Version re-copy-edited in May 2009; then again in July 2015 – references #8 & #9 were added and incorporated into the text.

Fast Facts and Concepts are edited by Sean Marks MD (Medical College of Wisconsin) and associate editor Drew A Rosielle MD (University of Minnesota Medical School), with the generous support of a volunteer peer-review editorial board, and are made available online by the Palliative Care Network of Wisconsin (PCNOW); the authors of each individual *Fast Fact* are solely responsible for that *Fast Fact’s* content. The full set of *Fast Facts* are available at Palliative Care Network of Wisconsin with contact information, and how to reference *Fast Facts*.

Copyright: All *Fast Facts and Concepts* are published under a Creative Commons Attribution-NonCommercial 4.0 International Copyright (http://creativecommons.org/licenses/by-nc/4.0/). *Fast Facts* can only be copied and distributed for non-commercial, educational purposes. If you adapt or distribute a *Fast Fact*, let us know!

Disclaimer: *Fast Facts and Concepts* provide educational information for health care professionals. This information is not medical advice. *Fast Facts* are not continually updated, and new safety information may emerge after a *Fast Fact* is published. Health care providers should always exercise their own independent clinical judgment and consult other relevant and up-to-date experts and resources. Some *Fast Facts* cite the use of a product in a dosage, for an indication, or in a manner other than that recommended in the product labeling. Accordingly, the official prescribing information should be consulted.
before any such product is used.